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On the Existence of Fields Governing the 2-Invariants 
of the Classgroup of Q( dp) as p Varies 

By H. Cohn* and J. C. Lagarias 

Abstract. This paper formulates general conjectures relating the structure of the 2-classgroup 
C2(dp) associated to Q(fdp) to the splitting of the ideal (p) in certain algebraic number 
fields. Here d i 2 (mod 4) is a fixed integer and p varies over primes. The conjectures assert 
that there exists an algebraic number field Qj(d) such that the Artin symbol [(Q2(d)/Q)/(p)] 
determines the first j 2-invariants of the group C2(dp), i.e. it determines C2(dp)/C2(dp)2J. 
These conjectures imply that the set of primes p for which C2(dp) has a given set of 
2-invariants has a natural density which is a rational number. Existing results prove the 
conjectures wheneverj = I or 2 and also for an infinite set of d withj = 3. The smallest open 
case isj = 3, d = -21. This paper presents evidence concerning these conjectures for d = -4, 
8 and -21. Numerical evidence is given that Q23(-21) exists, and that natural densities which 
are rational numbers exist for the sets of primes with 2'/ h(dp) for d = -4 and 8, for 
I <j < 7. A search for the hypothetical field 04(-4) ruled out the simplest candidate fields: 
04(-4) is not a normal extension of Q of degree 16 ramifying only at (2). 

1. Introduction. Gauss initiated the study of the group C(D) of equivalence classes 
of integral binary quadratic forms of discriminant D. He calculated the 2-rank el of 
the 2-classgroup C2(D) (that is, the Sylow 2-subgroup of C(D)) in terms of the 
prime factorization of D using his theory of genera. On the other hand he noted that 
the subgroup of classes of odd order Codd(D) behaved irregularly and exhibited no 
obvious patterns as a function of D. 

Gauss' theory of binary quadratic forms was later reworked by Dedekind in terms 
of the arithmetic of quadratic fields; Dedekind's formulation is most often used 
today. In this formulation the group C(D) is interpreted as the ideal classgroup of 
the quadratic field Q(jDh), taken in the narrow or strict sense, when D is a 
fundamental discriminant,** and as a narrow ring classgroup of Q(jD) if D is a 
nonfundamental discriminant. The class number h(D) is the order of the classgroup 
C(D). Note that Q(Fp-) has discriminant -4p when p 1 (mod 4), so the corre- 
sponding form classgroup is C(-4p). The correspondence between form classgroups 
and ring classgroups is described in Cohn [4] and Stark [35]. 

This paper is concerned with the 2-classgroup C2(D). Many results have been 
proved about the structure of C2(D) as a function of D. The structure of such an 
abelian 2-group G is specified by its complete set of 2i-invariants ej. These 
invariants are defined inductively by 

IG/G2 Il = 2el +e2+ +ej 
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Using methods that in principle go back to Gauss and Dirichlet, Redei and 
Reichardt [30] (see also [26]) determined the 4-invariant e2 of C2(D) in terms of 
quadratic residue criteria among the prime factors of D. Redei [27] later determined 
in special cases the 8-invariant e3 of C2(D) in terms of quartic residue criteria 
involving these prime factors. Redei [28], [29] went on to develop a general theory 
analyzing the structure of the 2-classgroup, and related it to equations of the form 

Dix2 - D2Y2 = z2n, where D1D2 = D, and to the anti-Pellian equation x 2 -D y2 

= -1. He gave a general determination of the 2'-invariants of C2(D) in terms of the 
ranks of certain matrices calculated using class field theory. Morton [19] gave an 
elementary version of Redei's theory and showed that Redei's matrices could be 
calculated using the solutions of certain auxiliary equations of the form 4 - a,x2 - 

a2x3 = 0. Waterhouse [36] had earlier showed the 8-invariant e3 could be calculated 
in this way. These results all have the feature that for] j 3 the 2-invariants ej are no 
longer connected in a direct way with the prime factorization of D. 

This paper proposes conjectures that relate the 2'-invariants of C2(D) to the 
prime factors of D in an explicit way, and presents evidence supporting these 
conjectures. 

These conjectures were motivated by the special case C2(-4p), where p is a prime. 
In that case C2(-4p) is a cyclic group, by genus theory, and we know that 

(1.1) 21 h(-4p) pp 1 (mod4), 

(1.2) 41 h(-4p) p 1 (mod8), 

(1.3) 81 h(-4p) p =x2 + 32y 2. 

Here (1.1) follows from genus theory, (1.2) from the Redei-Reichardt theorem, and 
(1.3) is a result of Barrucand and Cohn [1]. We observed that the right sides of 
(1.1)-(1.3) can be interpreted in terms of the splitting of prime ideals (p) in certain 
normal extensions of Q, as follows. 

(1.4) p 1 (mod 4) 4-( p) splits completely in Q(i), 

(1.5) p 1 (mod 8) -( p ) splits completely in Q(D8), 

(1.6) p =x2 + 32y2 4=*(p) splitscompletelyinQ(+8, 1 + F2 

Here t8 = exp(2,ri/8) is an 8th root of unity. The equivalences (1.4), (1.5) are 
consequences of class field theory over Q, and (1.6) is a consequence of class field 
theory over Q(V11-i). (Q(D8, 1 + V ) is the ring class field (mod(4)) over Q(5/4). 
See [2] for a discussion of ring class fields.) 

A consequence of conditions (1.4)-(1.6) is that the sets of primes they determine 
have a natural density. Let 2j denote the set of all primes p for which 2 J I h(-4p). 
The right sides of (1.4)-(1.6) imply that the sets El, 22, and 23 have natural 
densities 1/2, 1/4, and 1/8, respectively, by an application of the Chebotarev 
density theorem [4], [17]. 

CHEBOTAREV DENSITY THEOREM. Let K be a finite Galois extension of Q, and C a 
conjugacy class of the Galois group G = Gal(K/Q). Then the set of primes 

E(C) {(P): K/Q ] C 

has a natural density which is equal to I C 1/1 G I . 
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Recall here that the Artin symbol [(K/Q)/( p)] is a conjugacy class of the Galois 
group Gal(K/Q) defined for all primes p t dK, where dK is the discriminant of K. It 
consists of those elements a E Gal(K/Q) for which there is a prime ideal P of K 
lying over (p) for which x? = xP (mod P), for all algebraic integers x in K. The 
Chebotarev density theorem applies to the sets defined by the right side of (1.4)-(1.6) 
because the condition that (p) split completely in a normal extension K over Q is 
exactly that the Artin symbol [(K/Q)/( p)] be the identity element in the Galois 
group Gal(K/Q). 

The equivalences (1.1)-(1.6) lead us to ask the question: Under what circum- 
stances can the set of primes p for which C2(dp) has a given structure G be described 
in terms of Artin symbol conditions in some algebraic number field? Here d is held 
fixed and p is allowed to vary. We must suppose that d z 2 (mod 4) in order that 
there be an infinite number of primes p for which D = dp is a discriminant. 

We conjecture this is always the case. In order to relate the conjectures to known 
results, we phrase them in terms of the quotient group C2(dp)/C2(dp)2i, i.e., in 
terms of the 2k-invariants of C2( dp) for 1 < k < j. 

CONJECTURE Cj(d). Given the integer d z 2 (mod 4), there exists a normal exten- 
sion K = Kj(d) of Q having the following property Pj(d). 

Property P,(d). If p 1 and P2 are primes such that [(K/Q)/( p1)] = [(K/Q)/( P2)1] 
then C2( dp1) and C2(dp2) have the same 2k invariants for 1 , k ? j. 

Using elementary group-theoretic and Galois-theoretic considerations, we prove 
the following result in Appendix A. 

THEOREM 1.1. If there exists some extension K with Property Pj(d), then there exists 
a unique field Qi (d) of smallest degree with this property. Furthermore Qij(d) is a 
subfield of every field K having Property Pj(d). 

We call such a field Qij(d) a governing field, since the Artin symbols 

[(j(d )/Q)/( p)] govern the structure of the group C2(dp)/C2(dp )2J. 

If Conjecture Cj(d) is true, then an application of the Chebotarev density theorem 
implies the truth of the following conjecture. 

DENSITY CONJECTURE Dj(d). Given the integer d z 2 (mod 4), and an abelian 
2-group G of exponent <j - 1, the set 

71(d, G) = {(p): C2(dp) _ G}. 

has a natural density which is equal to a rational number. 

What evidence is there for these conjectures? First, Conjecture Cl(d) is true for all 
d z 2 (mod 4). This follows from genus theory using class field theory over Q; one 
can take K,(d) = Q(V'T). Second, Conjecture C2(d) is true for all d z 2 (mod 4). 
This follows from the Redei-Reichardt theorem and more class field theory over Q; 
one can take for K2(d) the field Q(VT, I p7, p,. . ., /. p), where the pi are the 
distinct primes dividing 2d. Third, Conjecture C3(d) is known to be true for some 
particular d. For d = -4, the equivalences (1.3) and (1.6) imply that A3(-4)= 

Q(G8, 1 + /2). Conjecture C3(d) is also true for all those discriminants d to which 
the results of Redei [27] apply; his quartic residue symbol criteria can be used to find 
an appropriate field K3(Ad) using class field theory. More recently Morton [20]-[23] 
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has proved Conjecture C3(d) for an infinite set of squarefree d. Kaplan [10]-[12] has 
also derived criteria which we believe (but have not checked) can be used to prove 
Conjecture C3(d) for certain infinite classes of d, using class field theory. 

The available methods of proof all break down for j ? 4. They give no indication 
whether or not Conjecture C4 is true for any d. 

This paper describes the results of a search for numerical evidence supporting 
these conjectures. First, we tested the Density Conjecture Dj(d) for d = -4 and 8, 
where C2(dp) is always a cyclic group, by examining large tables of class numbers. 
We accumulated data for d = -4 and empirically observed that the densities of the 
sets Y: on an initial segment of primes were close to 1/2' for 4 -j - 7, in 
particular, close to 1/16 for 161 h(-4p). In addition there exist fast algorithms for 
computing C2(D) without computing C(D). (The basic algorithm of this type is due 
to Shanks [33]. See [14] for additional references and a computational complexity 
analysis of one such algorithm.***) We give data for d = 8 extracted from a table of 
Kaplan and Sanchez [13] computed using such an algorithm. Here the densities of 
the sets Yj(8) of primes with 2J I h(8p) on an initial segment of primes were close to 
1/4' for 4 - j - 7. (The densities 1/4' for 1 -1j - 3 are known to exist.) 

Second, we examined Conjecture C3(d) for the simplest case d = -21 which is not 
yet known to be true. Section 3 describes our search for 23(-21). Guided by analogy 
with existing results, we located a field K for which there is overwhelming numerical 
evidence that 03(-21) C K. This example convinces us that Conjecture C3 is true for 
all d z 2 (mod 4). 

Third, we examined Conjecture C4(-4). Section 4 describes our search for a field 
E24(-4) extending the equivalences (1.1)-(1.6). We obtained negative results, ruling 
out all candidate fields of degree 16 ramifying only at (2), and certain fields of 
degree 32. Section 5 suggests new directions to pursue in a search for 04(-4). At 
present we do not have any direct evidence for the truth of Conjecture C4(-4). 

P. Morton has observed that the available evidence supports conjectures some- 
what stronger than Conjecture Cj(d). First, in all known cases the splitting behavior 
of (p) in Qlj(d ) and its subfields determines the 2k-invariants of C2(dp) for 
1 ? k < j. This assertion can be formulated in Galois-theoretic terms, as follows. We 
say that elements a,, a2 of a group G are in the same division if there is an element 
T E G and an integer m relatively prime to ord(a2) such that a = T(G2)mT-l. (This 
term is a translation of the name Abteilung used by Frobenius for the same concept.) 
The divisors of a group G are disjoint unions of conjugacy classes. It can be shown 
that the division that [(K/Q)/(p)] is in determines how (p) splits in all the 
subfields of K, and conversely. (See [16, Theorem 1.2].) We let {(K/Q)/( p)} denote 
the division of Gal(K/Q) containing [(K/Q)/(p)]. 

Second, Morton observed that in the case of positive discriminants D with D 0 O 
(mod 4), the conjecture can be extended to include the solvability of the anti-Pellian 
equation Xl - DX2/4 = -1. More generally, if we define for a positive nonsquare 

* * *The second author takes this opportunity to remark that a footnote on p. 374 of Morton [19] 
unfortunately suggests that the use of Gauss' ternary form algorithm in an algorithm to calculate C2(d) 
was first proposed in [14]. This idea is due to D. Shanks [33]. 
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discriminant the identity form QD(Xl, X2) by 

fxi- Dx2 if D _0(mod4), 
QD(X1, X2) = lD4-1 

xl + x2- 4 x2 ifD-1(mod4), 

then it is known that the equation 

QD(X1, X2) = D*, (XI, X2) = 1, 

is solvable for exactly two values of D* with D* # 1, D and D* dividing D. 
Furthermore the product of these two values is D. Consequently, if D = dp with 
(p, d) = 1, there is a unique such D* with D* I d. In this case we denote this value 
by d*(d, p). For example, d*(d, p) = -1 if and only if the anti-Pellian equation for 
dp is solvable. Morton conjectures there is a field where prime-splitting conditions 
determine d*(d, p) for each fixed 2-classgroup. 

We may formulate Morton's observations as follows. 

CONJECTURE C7*(d). Given the integer d z 2 (mod 4), there is a finite Galois 
extension K* = K,*(d) of Q with the following properties Pj*(d) and U,*(d). 

Property PJ,*(d). If two primes pl, P2 have Artin symbols lying in the same division of 

Gal(K*/Q), i.e. {(K*/Q)/(p1)} = {(K*/Q)/(p2)}, then C2(dp1) and C2(dp2) 
have the same 2k invariants, for 1 k j. 

Property U,*(d). If d > 0, and {(K*/Q)/(p1 )} = {(K*/Q)/(p2)}, and C2(dp 1) 
and C2(dp2) have 2J-invariant zero, then d *(d, pi) = d*(d, P2). 

As with Conjecture C,(d), it can be shown that if a field Kj*(d) exists, then there 
is a unique field Qj*(d) with the same properties which is a subfield of all such fields 
KJ*(d). (See Appendix A.) 

It is conceivable that further insight into these conjectures may be gained by more 
explicit knowledge about the Hilbert 2-class fields of Q( dp); cf. [5], [6], [7]. 

Finally we remark that it is possible to formulate analogues of Conjecture C,(D) 
concerning the structure of the l-classgroup of cyclic 1-extensions of Q, where l is an 
odd prime. 

We formulated the conjectures of this paper (in a less precise form) in early 1978, 
and proved Theorem 4.2 at that time. We described our results to P. Morton in 1979 
and suggested that Conjecture C3(d) could be proved for all d z 2 (mod 4). This led 
to his work [20]-[23]. The precise form of the conjectures stated in this paper would 
not have been made without Pat Morton's contributions; we are grateful to him for 
helpful conversations. Some of the results of this paper were announced in [8]. 

2. Numerical Data on Densities. We examined the Density Conjecture for d = -4 
using a table of class numbers h(-d) for d < 150,000. In this case C2(-4p) is cyclic, 
so one needs only to find the value of j such that 2 11 h(-4p). Since the Density 
Conjecture D3(-4) is known to be true in this case, we only tabulated primes p for 
which 81 h(-4p). Table 1 presents the observed counts of primes with 2J 1 h(-4p), 
where the counts were done in blocks of 100. At the bottom of the table we give the 
expected values of the counts, assuming conjectural densities-of 1/2i for 4 <j < 7, 
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and we compare this with the observed average value of the counts. The agreement 
of the data with these conjectured densities is good. The density fluctuations in the 
blocks of 100 are well within the ranges one would expect if there exist governing 
fields Qi(-4) for 4 <j < 7. 

We examined the Density Conjecture for d= 8 using the table of Kaplan and 
Sanchez [13]. They computed the 2-class number of Q(V/-jp) for p < 2,000,000 for 
which 81 h(8p), using a special purpose algorithm; see [33], [13]. In this case again 
C2(8p) is cyclic; the densities are known to exist and to be 1/4i for the sets of 
primes with 2' h(8p) for k = 1, 2 and 3. Table 2 presents counts for such primes 
done in blocks of 1000. At the bottom of the table we give the expected values of the 
counts, assuming conjectured densities of 3/41 for 2jll h(8p) for 4 <j < 7. Kaplan 
and Sanchez [13] have conjectured that the three sets of primes p with 2i I h(8p) and 
x-2px2 = -1, 2 and -2, respectively, each have density 1/4j. The data agree well 
with these conjectured densities. 

Table 3 gives the least primes p for which 2'J h(-4p), for 1 j < 9. Table 4 lists 
the least primes p for which 2Ill h(8p) and for which a particular equation xl- 

2pX2 = D* is solvable, where D* = -1, 2 or -2. 

TABLE 1 

Primes p for which 2'II h(-4p), counted in blocks of 100 primes for which 81 h(-4p). 

Block 8 16 32 64 128 ? 256 

100 62 20 16 2 0 0 

200 52 28 14 5 1 0 

300 47 26 15 9 2 

400 50 25 17 4 2 2 

500 45 32 13 7 3 0 

600 55 23 13 3 5 1 

700 39 26 20 9 6 0 

800 44 29 16 7 4 0 

900 48 23 13 8 3 5 

1000 46 30 13 5 5 1 

1100 56 20 12 5 4 3 

1200 47 23 20 6 4 0 

1300 50 26 12 5 4 3 

1400 48 27 14 7 3 

1500 46 27 12 7 5 3 

1600 52 30 7 6 2 3 

1700 48 29 10 2 4 7 

Expected 50.0 25.0 12.5 6.25 3.13 3. t3 
Value 

Observed 49.1 26.1 13.9 5.71 3.35 1.77 
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TABLE 2 
Primes pfor which 2'll h (8p), counted in blocks of 1000 primes such that 81 h (8p). 

Block 8 16 32 64 128 ' 256 

1000 768 199 42 I 1 0 0 

2000 764 186 43 5 2 0 

3000 763 182 47 6 2 0 

4000 777 167 41 12 3 0 

5000 758 174 57 10 I 0 

6000 748 193 50 7 2 0 

7000 742 192 51 13 0 2 

8000 746 199 45 7 2 1 

9000 777 179 34 8 2 0 

Expected 750 187.5 46.88 1 1. .72 2.93 0.98 Value 

Observed 760.3 185.7 45.56 8.78 1.56 0.55 

TABLE 3 
The smallest prime p for which 2 I h (-4p). 

2' D 

2 5 

4 1 7 

8 41 

16 257 

32 521 

64 4481 

128 9521 

256 21929 

512 72089 

TABLE 4 
The smallest primes p for which 2 II h (8p ) and X2 -2 py2 = 1, 2 or -2 is solvable. 

,)j ~ ~ ~~1 2 -2 

2 5 7 3 

4 41 17 73 

8 113 337 257 

16 3089 3361 1217 

32 12641 25409 23041 

64 50753 120977 27953 

128 675569 206081 243137 

256 1410977 1566449 1408961 
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3. The Governing Field U3(-21). Conjecture C3(d) has been proved for all d in 
which the 2-classgroup is cyclic; see [23]. In addition Morton [20] has proved 
Conjecture C3(d) ford = -P1P2 ... Pk I where all p1 1 (mod 4) and all (p,/pJ) = 1. 
The simplest case left open is d = -21. 

We searched for a field 3( -21) governing the structure C/C8 of the fields 
Q( /-2lp), where p runs over primes p 3 (mod 4). In this case the 2-classgroup of 

Q(V)-2 lp has the structure Z/2Z eD Z/2J Z for some j > 1. To analyze the struc- 
ture of this group further, we use the language of quadratic forms. Table 5 gives 
(ambiguous) forms Q3, Q7 and Q21 which are representative of the three nontrivial 
form classes of order 2 of discriminant -21p. There are two genus characters X-3, 
X-7 given by the Kronecker symbols (-3/.) and (-7/.). Table 5 also gives the 
values of these characters on these forms calculated using the quadratic reciprocity 
law. From Table 5 one sees that the class [Q3] is never the square of an ideal class, 
the class [Q21] is a square if and only if (-3/p) = (-7/p) = 1, i.e. (p) splits 
completely in Q(VIIT, V'7 ), and the class [QI] is a square if and only if (7/p) = 1, 
i.e. (p) splits completely in Q(xF7). 

From Table 5 we infer that S2(-21) = Q( -l, x, V/). Here -l is present to 
guarantee the Artin symbols of A2(-2 1) separate primes p 1 (mod 4) from primes 
p 3 (mod 4). 

Table 6 presents numerical data on the 2-class number of Q( /-21p) for 21p < 
250,000. The primes are grouped in four columns according to the signs of the genus 
characters X -3, X -7. Table 6 also specifies the fields in which primes p -3 (mod 4) 
having the given genus character values split completely. (The 2-class number of 
Q( -21p) for those p in the third column is always 4.) We hoped that the 
hypothetical field 23(-21) would be a compositum of certain ring class fields, i.e. 
that the splitting of primes in 23(-21) could be described in terms of representation 
by quadratic forms, whose discriminants divide some power of 4.21. (This is 
suggested by analogy with the result of Barrucand and Cohn [1] and Morton's 
results.) This is indeed so, in the sense that the numerical data is consistent with: 

161 h (-21 p) (A) or (B) or (C) below holds, 

TABLE 5 
A mbiguous forms and genus characters for discriminants D -21 p p 3 (mod 4). 

X-3 X-7 

Q3 = 3X2 + 3xy + 7p + 3 2 (p) -1 

Q7 = 7x2 +7xy 3P 72 1 

Q21 = 21X2 + 21xy + P + 21Y2 (p) (7) 
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TABLE 6 

2-class numbers of Q(-21p ), p-3 (mod 4). 

X-7 1 1 1 -I 

Splitting 
Field Q(Vz3,V . ) Q(VTf. \i) Q(V3i,VT ) Q (AJ,f i7) 

p Ic211 j p jC21 p 1c21 

43 16 19 16 11 4 47 8 

67 8 31 8 23 4 59 32 

79 8 103 8 71 4 83 8 

127 8 139 8 107 4 131 8 

151 16 199 16 179 4 167 8 

163 8 223 16 191 4 227 32 

211 16 271 8 239 4 251 64 

331 16 283 32 263 4 311 8 

379 16 307 16 347 4 383 16 

463 8 367 16 359 4 419 16 

487 16 439 16 431 4 467 64 

499 32 523 8 443 4 479 8 

547 8 607 16 491 4 503 16 

571 8 619 8 599 4 563 16 

631 8 643 64 659 4 587 16 

739 8 691 8 683 4 647 8 

751 32 727 8 743 4 719 32 

823 8 787 8 827 4 839 8 

883 16 811 8 863 4 887 8 

907 64 859 128 911 4 971 8 

919 32 1039 16 947 4 983 32 

967 8 1063 8 1019 4 1091 8 

991 32 1123 8 1031 4 1151 16 

1051 8 1231 32 1103 4 1223 8 

1087 8 1163 4 

.1171 128 1187 4 

where 

(A) p ) I and p-7X2 + 36y2 

(B) ( p) ( p 
-1 and p = 7x2 + 12y2, 

(C) (i4=(Z=1 and p =84x2-y. 

It is well known that there exist fields called ring class fields whose Artin symbols 
separate primes represented by classes of quadratic forms of a fixed discriminant; 
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see [2], [16]. In this case there are fields KA' KB' KC such that the primes p 3 
(mod 4) that split completely in these fields are exactly the primes specified by (A), 
(B), (C), respectively. They are: 

KA = Q( -3 -7, -2(3 + )21)) 

KB = Q -3, 7, 1+ 2T7 

KC=Q F3, 7, 2(7+21)) 

(These fields also contain primes p 1 (mod 4) that split completely.) These three 
fields are subfields of the ring class fields of discriminants -12.84, -4.84, 4.84, 
respectively. 

This evidence leads us to the following conjecture. 

CONJECTURE. The governing field 23(-21) exists and is a subfield of 

Q -1, 3i, 7, A/-2(3 + 21 , 1+ 2F7, 92(7 + 21) 

4. The Governing Field Q4(-4). Conjecture C3(d) has been proved for an infinite 
set of d E 2 (mod 4). By contrast Conjecture C4(d) has not been proved for even a 
single d E 2 (mod 4). 

In order to produce numerical support for Conjecture C4(-4), we searched for the 
hypothetical governing field 24(-4). We were guided by analogy with the known 
governing fields Qj(d) withj < 3. These suggest the following two working hypothe- 
ses concerning K = 24(-4). 

(H1) Kis normal over Q and [K: Q] = 16. 
(H2) The discriminant of K is 2k, for some k, i.e. K ramifies only over the ideal 

(2). 
Evidence favoring (HI) is given by the pattern of fields (1.4)-(1.6) and by the fact 

that those p with 161 h(-p) appear to have natural density 1/16, as described in 
Table 3. Evidence favoring (H2) is that all known governing fields Qj(d) ramify only 
at primes dividing 2d. 

There are only a finite number of fields K satisfying (H1), (H2). This is a 
consequence of the following fact, which has been known in principle since the 
1920's. We indicate a proof for the reader's convenience. 

THEOREM 4.1. For any positive integer N and any finite set of primes S = { PI,... ,Pk } 
there are only a finite number of algebraic number fields K such that: 

(i) [K: Q] = N. 
(ii) All primes p dividing the discriminant dK are in S. 

Proof. Using the theory of the different and higher ramification groups, one can 
obtain a bound B(N, p) such that if pII dK, then j < B(N, p) for all fields K of 
degree N over Q. Ore [25] showed that if N = bo + b1 p + b2 p2 + * +bmpm with 
0 < bm < p - 1 and if A denotes the number of nonzero bi, then one can take 
B(N, p) = bo + 2bIp + * +(m + I)bmPm -A, and that this bound is sharp. We 
conclude that condition (ii) implies 

dKI D = pB(N,p). 
p& S 
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Hence dK < D. Theorem 4.1 then follows from the well-known fact that only a finite 
number of algebraic number fields can have the same discriminant (cf. Narkiewicz 
[24, Theorem 2.11]). 0 

Since there are only a finite number of fields K satisfying (HI), (H2), it is possible 
to test for each K whether or not K = 24(-4). We obtained the following result. 

THEOREM 4.2. Let K be a field such that 
(i) K is a normal extension of Q of degree 16. 
(ii) K ramifies only over (2). 

Then K =# 24(-4). 

We give two proofs of this theorem. 
First Proof. In order that K = 24(-4) we must have 23(-4) = Q(t8, r1 + 4/ ) be 

a subfield of K; we assume that in the remainder of the proof. Then K is Galois over 
Q(O8) with Galois group G of order 4. Then G is abelian, and so all possible K are 
specified by class field theory overQ(t8). 

Class field theory asserts that for an abelian extension K/k the prime ideals that 
split completely from k to K are those belonging to a certain subgroup of a ray 
classgroup modulo a certain conductor cond(K/k). In our case assumption (ii) 
implies that the conductor involves only prime ideals lying over (2) in Q(G8). Now 
Q(t8) has unique factorization and in it (2) = (g2)4 totally ramifies, and we can take 
72 = 1 + '8. Hence cond(K/k) = (g2)m for some integer m. 

FACT 1. All fields K containing Q(G8 1 + V ) and satisfying (i), (ii) have conduc- 
tor ( T2 )m for some m < 12 over Q(G8). 

We defer the proof of Fact 1. Assuming it is true, we may conclude that any two 
prime ideals Q(G8) in the same ray class (mod*( g2)l2) must have the same Artin 
symbol in each field K satisfying (i), (ii). We can show that no such K is 04(-4) by 
exhibiting two such ideals (g,) and (gP2) of norms p1 and P2, respectively, such that 
8 IIh(-p ) and 161 h(-p2). Indeed we have 

7593 = -11 + 12 8 + 163, N(7593 ) = 593, 

78273 = -11 - 8- 482 + 83 , N(78273) = 8273, 

with h(-593) = 24, h(-8273) = 64. It is immediate that 

7593 78273 (mod (8)) 
are in the same ray class with conductor (g2)12. The theorem follows. 

It remains to prove Fact 1. To do this we explicitly determine all such extensions 
K. Then for each K we bound its conductor, using the conductor-discriminant 
formula of Hasse [9] and relative different calculations. 

To determine all such fields, we use the fact that they are all Kummer extensions, 
since Q(T8) contains the 4th roots of unity. We use the already mentioned fact that 
Q(t8) has class number one (proved using the Minkowski discriminant bound), and 
the known factorization (2) = (g2)4. We also need generators for the unit group U of 

FACT 2. U = Kc, '8),wherec = 1 + r2. 
It is a well-known fact that unit groups of cyclotomic fields are generated by the 

real units and the roots of unity. In this case the real subfield of Q(D8) is Q(F2 ), and 
Fact 2 follows. 
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Let ko = Q(G8). The information above implies that all such K have either the 

form ko(Wj7), where ji has norm 1, 2, 22 or 23, or the form ko(0/l , ^V2y), where 

It = 1 + F2 and J2 has norm 1 or 2. Recalling that 'T2= 1 + t8' the complete list 
is: 

Cyclic 4-extensions. K = ko(4t), where i = (1 + /)O2 and 0 = 1, '8 'T2, '872. 

Noncyclic 4-extensions. K = ko( 1 + 2 , v!ft)9 where y = '8iT2, t8'2. 

We now bound the conductors of these fields, making use of Hasse's conductor- 
discriminant relation [9]. We need here three special cases of his formula. 

(a) If K/k is a quadratic extension, then 

cond(K/k) = DK/k. 

(b) If K/k is cyclic of degree 4 with an intermediate quadratic extension k,, then 

DK/k = (cond(K/k ))2 Dk /k - 

(c) If K/k is a noncyclic abelian extension of degree 4 with intermediate quadratic 
extensions kI, k2, k3, then 

cond( K/k) = l.c.m. (cond( ki/k)). 

We will also compute relative differents (8K/k) of quadratic extensions and make use 
of the relation 

(4.1) DK/k = NK/k(8K/k). 

valid in such a case. The relative different SK/k of a quadratic extension K = k( Fj) 
is bounded by 

(4.2) 8K/k I (2 jru 

using the polynomialf(x) = x2 - jt and f'( /ThD 2 /;; cf. Lang [18, p. 62]. 

For k1 = ko(V 1+ x/ ) we obtain the sharper bound 

(4.3) Bk ,/k( 
1 

( 2 )3 

Take 0 (1 + V1 + v' )/(1 - 8), an integer in kI satisfying x2 - (2/(1 - D8))x- 
00' 0, where 0' is the conjugate of 0. Then 

(t,()) =( 12 A1+ ) (S72)39 

as an ideal in k . This proves (4.3). (In fact 8k/k( = (X2)3 in this case.) From fact (a) 
we get 

(4.4) cond(kl/ko) = Dkl/ko (7r2 )6. 

Next let k2 = k0( 8 )9 k3= k0(VT), k4= ko(vT87)0 Using (4.2), we have 

cond(ki/k ) 1('72)9, in all three cases. Then, using (c), we obtain cond(K/ko) I(72)9, 

if Gal(K/ ko) is a noncyclic group of order 4. 
The cyclic 4-extension case remains. We first bound DK/k, by bounding the 

different 8 via (4.2) for all four possible fields K and then using (4. 1). We obtain 
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Next we use the relation (cf. Ribenboim [32, p. 213]), 

DK/ko = (Dkl/ko )2 Nkl/ko[DK/k] . 

Letting Dk/k0 = (72)a1, where a < 6 by (4.4), we obtain 

DK/k | (,2 )2 ( 16 722) (.72 )12a 

Then, using Hasse's formula (b), we obtain 

cond(K/ko) I(,2)(18+a)/2. 

Since cond(K/ko) = ('72)b for an integer b and a < 6, this implies b < 12, finishing 
the proof. D 

We remark that with slightly more work the bound on the conductor ('72)" in Fact 
1 can be sharpened to m < 1 1. We use the fact that in k, the ideal (2) = (A)8, where 

A 1 ___8 

21 +i 1 + 8' 

Thus in k, we have 7'2 = A2 for some unit q in k,. Consequently the cyclic 

4-extensions of ko are given by K = k1(/Fj), where j = ( 1 + F2 )a, where a = 1, 

;8 m8. Using (4.2) with these ji, we may replace (4.5) by 

DK/k 1 (4)- 

Using this improved bound in the proof above leads to m < 11. 
This first proof depended on finding suitable prime elements 7593 and T8273* Once 

they were found, it was straightforward to verify that they have the required 
properties. We found 7593 using Reuschle's tables [31] and located 7'8273 by a 
computer search. 

The second proof is more direct, but involves more computation than the first 
proof. 

Second Proof. (Sketch) We determine all possible fields K with Q(t8, 1 + 4/ ) as 
a subfield, normal over Q(G8), which ramify only over (2), as in the first proof. 

For each such field we determined on a computer which primes p < 2500 split 
completely. These are given in Table 7. Primes that split completely are exactly the 
primes whose Artin symbol is the identity element. To show K =# Q4(-4), it suffices 
to locate two primes p1 and P2 that split completely, such that 811 h(-p,), and 

161 h(-p2). This can be done for each field K using Table 7. (Note that (593) splits 
completely in all seven candidate fields; this provides a consistency' check on the 
first proof.) 

The data in Table 7 was calculated using the fact that conditions for a prime (p) 
to split completely in a field K can be expressed in terms of the factorization 
(mod p) of a monic polynomial f(x) = 0. whose root generates the field (Lang [18, p. 
27]).t In this case the fields are generated by a series of square-root adjunctions, and 
we can convert the condition that (p) split completely into the solvability of a series 

t More precisely, this is true except for a finite set of exceptional primes, which are the primes 
pI Disc(f(x)). The only exceptional prime for the seven candidate fields we tested was (2). 
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4 
of square root extractions (mod p). For example, for K = Q(D8, 1 + F ), if p # 2, 
then the ideal (p) splits completely in K if and only if the following system of 
congruences can be solved (mod p): 

I 2-- (mod p), 2 - 

(4.6) 
2 _ (mod p), 

x3-1+ x2 + (x2) (mod p), 
2 - 
X42 _ X3 (mod p). 

(Here xl, X2, X3, X4 play the role of - ;8' 21 + F2 and 1 + x/_, respectively, in 
Z/p Z.) We derived a system of successive square-root extractions (mod p) like (4.6) 
for each of the seven candidate fields K and used a well-known fast algorithm for 
extracting square roots (mod p) (see [34]) to compute the data given in Table 7. D1 

TABLE 7 
Primes p < 2500 that split completely in fields of degree 16 which are Galois over ko 

Test 
Primes Noncyclic K = ko(ViY7/,\Fu) Cyclic K = ko(V(l+72) 

(ps) (ps) 

161h (-p) 2 8 8r2 2 t8 t8I2 

257 337 113 41 41 113 137 41 

409 457 257 137 313 137 353 113 

521 521 337 313 353 257 521 257 

569 569 353 337 409 457 569 313 

809 577 577 409 457 593 593 409 

857 593 593 577 593 761 857 521 

953 761 881 593 761 809 953 569 

1129 809 1153 881 809 1129 1153 593 

1153 857 1201 1201 1129 1201 1201 857 

1201 881 1217 1217 1153 1217 1217 953 

1217 953 1249 1321 1201 1249 1321 1201 

1249 1129 1553 1553 1217 1321 1601 1217 

1657 1201 1601 1657 1601 1993 177-7 1249 

2113 1217 1777 1889 1657 2113 1993 1657 

2137 1553 1889 1993 1777 2129 2113 2113 

2153 1889 2113 2113 2113 2137 2129 2129 

2273 2113 2129 2129 2129 2153 2153 

2377 2129 2273 2297 2137 2273 2297 

2137 2273 2377 2377 

2153 2297 

2377 
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Theorem 4.2 shows we must abandon at least one of the hypotheses (H1), (H2). 
We considered replacing hypothesis (HI) by: 

(HI*) K is normal over Q and [K: Q] =2J for somej : 5. 
We retained hypothesis (H2); Section 5 presents some further evidence suggesting 
(H2) is true. 

Theorem 4.1 shows that there are only a finite number of fields satisfying (H1*), 
(H2) that have j < N, for a fixed N. Their number grows rapidly with increasing N. 
It is a difficult matter to obtain a complete list of such fields for any N > 6. 

We examined certain fields of degree 32 satisfying (H1*), (H2) suggested by the 
following theorem of K. S. Williams [371. 

TABLE 8 
Primes p < 2500 that split completely in certain fields of degree 32 that are cyclic 

extensions of Q(G16), given by K = Q( 16 ) 

Test 
Primes 1 Q2 Q3 Q253 2 ir2l2 Ir2Q3 Ir2Q2523 

257 257 113 353 113 257 113 337 113 

1153 337 337 593 257 353 881 577 257 

1201 881 353 1153 577 577 1553 881 337 

1217 1217 577 1201 881 593 1777 1153 353 

1249 1249 593 1217 1153 1201 1889 1217 593 

2113 1553 1201 1601 2129 1217 1249 1153 

2273 1777 1249 1777 2273 1553 1889 1201 

2113 1553 2113 1601 2113 1249 

1601 2129 1889 2129 1601 

2273 2113 2273 1777 

1889 

2129 

2273 

113 353 113 257 113 337 113 257 

257 577 337 337 257 593 577 353 

593 881 353 577 337 1201 593 881 

1201 1249 881 593 353 1889 1153 1153 

1217 1601 1153 1153 579 2129 1201 1249 

1249 1777 1217 1201 881 1217 1553 

2113 2129 1553 1553 1217 1249 1601 

2129 1601 1777 1601 1553 1889 

2113 2273 1777 1777 2273 

2273 1889 1889 

2113 2113 

2129 2273 
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THEOREM. I P -1 (mod 8), then h(-p) = t + p - 1 (mod 16), where ep = t + 

ufp is the fundamental unit of norm -1 in Q(JF). 

This theorem suggests that the congruence class (mod 16) of p may be a relevant 
variable in determining when 161 h(-p), i.e. that Q(G16) C 04(-4). We obtained the 
following negative result. 

TABLE 9 

Primes p < 2500 that split completelv in certain fields of degree 32 that are noncvclic 

Galois extensions of Q(16), given bv K Q (16i/, T ). 

Test 
Primes Q2 Q 3 512Q 1 T2 7r252 i2123 ir51223 

257 337 113 257 113 353 113 257 

153 1153 577 353 257 577 337 337 

1201 1249 1217 593 1153 593 353 577 

1217 1553 1777 881 1217 881 593 1249 

1249 1889 1889 1201 1553 1153 881 1777 

2113 2129 2113 1601 2113 1201 1201 

2273 2273 1889 2129 1553 1217 

2273 1601 1249 

1777 1601 

2129 2113 

S1 ~16 q ~161n23 -(16 iZ 2 Q 3 7r n,1r s 16 2 6I 6 7.)3 2 6 Ir62 Q 2' Q 3 

257 113 337 113 257 113 353 113 

353 593 577 257 337 337 1217 257 

577 881 593 337 593 353 1249 577 

1153 1153 881 353 881 577 1553 593 

1217 1201 1201 1553 1153 1153 1601 881 

1249 1249 1217 1601 1201 1601 1777 1201 

1601 1777 1553 1777 1217 2273 2113 1249 

1889 1889 1889 1889 1777 2129 1553 

2113 2273 2113 2129 2113 2129 

2273 21-29 2273 

THEOREM 4.3. Let K be a field such that 
(i) K is a normal extension of Q(G16) of degree 32 over Q. 
(ii) KcontainsQ(T16, 1 V). 
(iii) K ramifies only over (2). 

Then K =# 04(-4). 

Proof. (Sketch) We find explicit generators for all such fields and proceed as in the 
second proof of Theorem 4.2. 
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We use the following facts about Q(G16). 
FACT 1. Q(G16) has class number one. 
FACT 2. The ideal (2) = (w2)8, where w2 = 1 - 16 

FACT 3. The unit group U =K(16 oil Q2, Q>3), where the Qk are given by 
2k 

Ok I (D16)J, k = l1,2, 3. 
I =o 

We again have two cases, depending on whether the candidate field K has cyclic or 
noncyclic Galois group over Q(G16). Let k2 = QG10- 

Cyclic 4-extensions. K =k2(\jI), where y = r/ 02 and 
6 = Ua1oa20a3,a4'a5 

with each a, = 0 or 1. 

Here we used the fact that Q(G16,)= Q(16, 61 + v1 i). There are in fact only 
16 distinct cyclic fields; the presence of 1 + F2 in the unit group introduces 

redundancies in this list. The redundancies are given by k2(4i) = k2( n'), where 

MT = F(0,)2 and 

6' &21lal&1a2&a'a3a4~a5 8 1 'Q2 a3 ClU2416' 

We obtain a nonredundant list of fields by fixing a3 = 0. Table 8 shows for all such 
fields K that K # 4(-4). 

Noncyclic 4-extensions. K = k2(V, ,4)' where ,u = S2la22,a4Ia5 and each a. = 
or 1, not all zero. 

Table 9 shows that all such noncyclic fields K have K =# ?4(-4). D 

5. Where might ?4(-4) be? Does the governing field ?4(-4) exist? We have ruled 
out the simplest candidate fields. It appears that the simple pattern of the equiva- 
lences (1.1)-(1.6) does not extend to the case where 16 1 h(-p). We believe that the 
existence of the hypothetical field ?4(-4) would provide the most reasonable 
explanation of the observed densities in Tables 1 and 2. At this point one would like 
further theory which indicates where to search next for 04(-4). 

The following result, due to P. Morton, provides some further theory and suggests 
the possible truth of hypothesis (H2). 

THEOREM 5.1 (MORTON). Let n 2 1, and let p be a prime for which 

(5.1) p = 2x2' y2' 

is solvable with x 1 (mod 2), n > 1. Then 2n+1 I h(-4p). 

Proof. (Morton) The condition x -1 (mod 2) guarantees p _1 (mod 8), so that 
(2) = p2 in Q(FpY). Also P is a nonprincipal prime ideal since X2 + py2 = 2 is 
unsolvable. In Q(FpY) we may rewrite (5.1) in the form 

(5.2) (2Y + P )(Y - -p) 2x27. 

Now let A be the greatest common ideal divisor of (y2fl1 + FpY) and (y2fl - V7i) 
in Q(VY). Then A j(y2n-' + F7J) - (y2 -'1 ) - 2VY. Sincey is odd andp I y, 
this gives A 1(2). Since p 1 (mod 8), 2(y2 + Fp-) is not an algebraic integer, so 
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(2)t y2' + ap- and consequently A = P. Then (5.2) implies the ideal factoriza- 
tions 

( y + - 
) (B1 )2 p (2 

-B2 ) p. 

Consequently [B,]2 - [P] as ideal classes, [B, 2n [p]2 [(1)] as ideal classes, so 
2n+ I h(_4p). 1-1 

The hypothesis x 1 (mod 2) is necessary for Theorem 5.1 to be true. Indeed, one 
might ask whether the weaker conditions 

+p = 2x2 -y2n p1 (mod2 +2) 

imply that 2n+' I h(-4p). This is true if n =1 or 2 but is false for n = 3 as shown by 
the example x = 2, y = 5, p = 390113. Here h(-4p) = 8.61 and 16 does not divide 
h(-4p). 

We examine the case n = 3 of Theorem 5.1. It states that if 

(5.3) p-2x8 -y8 

with x -1 (mod 2), then 161 h(-4p). The condition (5.3) implies that p is the norm 

of the principal prime ideal (7) in the nonnormal extension Q(V), where 

8 
7 = XV2 -y. 

The condition that S be principal is a splitting condition on (p) in the Hilbert class 

field of Q(VZ), and the condition that x -1 (mod2) is a splitting condition on (p) 

in a ray class field over Q(V) whose conductor involves only ideals lying over (2). 
These observations are consistent with hypothesis (H2) in that they involve fields 
that ramify only over (2). 

Morton's condition (5.3) involves the representation of p by the norm of an 

element in a Z-module of rank 2 in the ring of integers OL of the field L = Q(V). If 
we could extend this to a condition involving a Z-module of full rank 8 in OL it 
would follow that i4(-4) exists, and that it is an appropriate class field over 

Q(G8, hi). Based on these remarks, we advance the following working conjecture. 

WORKING CONJECTURE. For all large enough j, S24(-4) C Mj, where Mj is the ray 

class field (mod(2)') over Q(D8, 2) 

This conjecture can be used as a basis for a more extensive computer-aided search 
for i4(-4). We remark that the fields Mj for largej contain S23(-4) and they ramify 
only over (2). Theorem 5.1 together with the prime 390113 mentioned earlier show 

that S24(-4) is not contained in Q(G32, V) Consequently if the working conjecture is 

true, we must have j > 1. 

Appendix A. Governing Fields Are Unique. 
Proof of Theorem 1.1. Let K, and K2 be two fields having Property Pj(d). The 

uniqueness of a minimal such field contained in all the others follows from the fact 
that k = K, n K2 also has the Property Pj(d). 

To prove this fact, let K1 K2 be the compositum of K, and K2. It is Galois over Q 
since K, and K2 are. Let H, and H2 be the subgroups of G = Gal(KIK2/Q) keeping 
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KI and K2 fixed, respectively. A well-known fact of Galois theory states that H1 H2 is 
a normal subgroup of G and its fixed field is K1 n K2. (See Figure A- 1.) 

l / x K K2 

Hi H2 K1 K2 

HI H2 K, n K2 

FIGURE A-l 
Galois groups and their corresponding fixed fields 

Now let f be any function on G with the properties: 
(i) f is constant on conjugacy classes of G. 
(ii) f(ah,) = f(a) for any hi G H, i.e. f is a function defined on G/H,. 

Then f is defined on G/H, H2 and is constant on conjugacy classes there. To see this, 
note that f(ah1h2) = f(ah1) = f(a) for all a E G, h1 E HI, h2 E H2. Also if a - 

cbc'- (mod H1H2), then f(a) -f(cbc-hIh 2) = f(cbc-') = f(b). For our application, 
f is that function on G which satisfies (i) and assigns to an element a the appropriate 
2-classgroup structure guaranteed to exist by Property P,(d) for that Artin symbol. 
Note that K1 K2 has the Property PJ(d) because the sets of primes determined by its 
Artin symbols are a refinement of the sets of primes determined by the Artin 
symbols of K1. Then property (ii) above is just the assertion that K1 and K2 have 
Property P,(d), and the conclusion is that K, n K2 also has Property PI(d). D 

Remark. The same argument applies, mutatis mutandis, when conjugacy classes 
are replaced by divisions. Consequently, there are corresponding unique minimal 
fields QJ.(d) for Conjecture C*( d). 
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